Enhanced conductivity in ionic conductor-insulator composites: numerical models in two and three dimensions
نویسندگان
چکیده
We describe a two-dimensional (2D) and a three-dimensional (3D) percolation model for ionic conductor-insulator composites such as copper(I) bromide-titanium dioxide (CuBr-TiO2) or lithium iodidealumina (LiI-Al2O3). These composites present an enhanced conductivity closely related to the insulator concentration. This effect is explained by the formation of highly conducting space charge regions near the phase boundaries which are represented by good conductor bonds. Our numerical model takes into account grain size and correlation effects. The dimension has a leading role for the conduction properties. In the 2D case, the good conductor bonds do not percolate, whatever the insulator concentration, and the maximum conductivity of the composite samples is of the same order as that of the ionic conductor grains. The behavior of the system is very different in the 3D case where, for a large domain of composition, the good conductors percolate through the regions between the conductor grains. For the CuBr-TiO2 composites the conductivity versus composition curve is bell-shaped. Conversely, in the LiI-Al2O3 system, a linear relation between the conductivity and the insulator volume fraction is obtained in the experiments. Our model gives a plausible interpretation of the conductivity in both systems. PACS. 66.10.Ed Ionic conduction – 66.30.Dn Theory of diffusion and ionic conduction in solids
منابع مشابه
Enhancing grain boundary ionic conductivity in mixed ionic–electronic conductors
Mixed ionic-electronic conductors are widely used in devices for energy conversion and storage. Grain boundaries in these materials have nanoscale spatial dimensions, which can generate substantial resistance to ionic transport due to dopant segregation. Here, we report the concept of targeted phase formation in a Ce0.8Gd0.2O2-δ-CoFe2O4 composite that serves to enhance the grain boundary ionic ...
متن کاملOn the Origin of Transport Non-Universality and Piezoresistivity in Segregated Conductor-Insulator Composites and Application to Thick-Film Resistors
In this thesis we address the description of electrical transport properties of disordered conductor-insulator composites, mostly by numerical Monte Carlo simulations and analytical study of realistic tunnelling-percolation models. Such composites are basically constituted by conducting particles dispersed in an insulating matrix and present a conductor-insulator phase transition, with critical...
متن کاملDielectric resonances in disordered media
Binary disordered systems are usually obtained by mixing two ingredients in variable proportions: conductor and insulator, or conductor and super-conductor. They present very specific properties, in particular the second-order percolation phase transition, with its fractal geometry and the multi-fractal properties of the current moments. These systems are naturally modeled by regular bi-dimensi...
متن کاملTunneling conductivity in composites of attractive colloids.
In conductor-insulator nanocomposites in which conducting fillers are dispersed in an insulating matrix, the electrical connectedness is established by inter-particle tunneling or hopping processes. These systems are intrinsically non-percolative and a coherent description of the functional dependence of the conductivity σ on the filler properties, and in particular of the conductor-insulator t...
متن کاملبررسی انتقال حرارتی یک نوع رزین آکریلی گرما پخت مخلوط شده با ذرات اکسید آلومینیوم (Al2O3)
One of the most important characteristics of denture base is thermal conductivity. This property has a major role in secretions of salivary glands and their enzymes, taste of the food and gustatory response. Polymethyl methacrylate used in prosthodontics is relatively an insulator. Different materials such as metal fillers and ceramics have been used to solve this problem. The aim of this study...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2001